78 research outputs found

    On capacity expansion planning under strategic and operational uncertainties based on stochastic dominance risk averse management

    Get PDF
    A new scheme for dealing with uncertainty in scenario trees is presented for dynamic mixed 0–1 optimization problems with strategic and operational stochastic parameters. Let us generically name this type of problems as capacity expansion planning (CEP) in a given system, e.g., supply chain, production, rapid transit network, energy generation and transmission network, etc. The strategic scenario tree is usually a multistage one, and the replicas of the strategic nodes root structures in the form of either a special scenario graph or a two-stage scenario tree, depending on the type of operational activity in the system. Those operational scenario structures impact in the constraints of the model and, thus, in the decomposition methodology for solving usually large-scale problems. This work presents the modeling framework for some of the risk neutral and risk averse measures to consider for CEP problem solving. Two types of risk averse measures are considered. The first one is a time-inconsistent mixture of the chance-constrained and second-order stochastic dominance (SSD) functionals of the value of a given set of functions up to the strategic nodes in selected stages along the time horizon, The second type is a strategic node-based time-consistent SSD functional for the set of operational scenarios in the strategic nodes at selected stages. A specialization of the nested stochastic decomposition methodology for that problem solving is outlined. Its advantages and drawbacks as well as the framework for some schemes to, at least, partially avoid those drawbacks are also presentedThis research has been partially supported by the projects: MTM2015-63710 and MTM2016-79765 from the Spanish Ministry of Economy and Competitiveness. The authors like to thank the positive criticism of their colleagues Antonio Alonso-Ayuso, Luis Cadarso, F. Javier Martín-Campo and Angel Marín that helped to improve the presentation of the wor

    On the time-consistent stochastic dominance risk averse measure for tactical supply chain planning under uncertainty

    Get PDF
    In this work a modeling framework and a solution approach have been presented for a multi-period stochastic mixed 0–1 problem arising in tactical supply chain planning (TSCP). A multistage scenario tree based scheme is used to represent the parameters’ uncertainty and develop the related Deterministic Equivalent Model. A cost risk reduction is performed by using a new time-consistent risk averse measure. Given the dimensions of this problem in real-life applications, a decomposition approach is proposed. It is based on stochastic dynamic programming (SDP). The computational experience is twofold, a compar- ison is performed between the plain use of a current state-of-the-art mixed integer optimization solver and the proposed SDP decomposition approach considering the risk neutral version of the model as the subject for the benchmarking. The add-value of the new risk averse strategy is confirmed by the compu- tational results that are obtained using SDP for both versions of the TSCP model, namely, risk neutral and risk averse.The authors would like to thank to the two anonymous review- ers for their help on clarifying some concepts presented in the manuscript and strongly improving its presentatio

    A parallelizable algorithmic framework for solving large scale multi-stage stochastic mixed 0-1 problems under uncertainty

    Get PDF
    Preprint submitted to Computers & Operations Researchmulti-stage stochastic mixed 0-1 optimization, nonsymmetric scenario trees, implicit and explicit nonanticipativity constraints, splitting variable and compact representations, scenario cluster partitioning

    Lagrangean decomposition for large-scale two-stage stochastic mixed 0-1 problems

    Get PDF
    In this paper we study solution methods for solving the dual problem corresponding to the Lagrangean Decomposition of two stage stochastic mixed 0-1 models. We represent the two stage stochastic mixed 0-1 problem by a splitting variable representation of the deterministic equivalent model, where 0-1 and continuous variables appear at any stage. Lagrangean Decomposition is proposed for satisfying both the integrality constraints for the 0-1 variables and the non-anticipativity constraints. We compare the performance of four iterative algorithms based on dual Lagrangean Decomposition schemes, as the Subgradient method, the Volume algorithm, the Progressive Hedging algorithm and the Dynamic Constrained Cutting Plane scheme. We test the conditions and properties of convergence for medium and large-scale dimension stochastic problems. Computational results are reported.Progressive Hedging algorithm, volume algorithm, Lagrangean decomposition, subgradient method

    On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach

    Get PDF
    © 2023 The Authors. Published by Elsevier B.VA novel approach based on a specialized interior-point method (IPM) is presented for solving largescale stochastic multistage continuous optimization problems, which represent the uncertainty in strategic multistage and operational two-stage scenario trees. This new solution approach considers a splitvariable formulation of the strategic and operational structures. The specialized IPM solves the normal equations by combining Cholesky factorizations with preconditioned conjugate gradients, doing so for, respectively, the constraints of the stochastic formulation and those that equate the split-variables. We show that, for multistage stochastic problems, the preconditioner (i) is a block-diagonal matrix composed of as many shifted tridiagonal matrices as the number of nested strategic-operational two-stage trees, thus allowing the efficient solution of systems of equations; (ii) its complexity in a multistage stochastic problem is equivalent to that of a very large-scale two-stage problem. A broad computational experience is reported for large multistage stochastic supply network design (SND) and revenue management (RM) problems. Some of the most difficult instances of SND had 5 stages, 839 million linear variables, 13 million quadratic variables, 21 million constraints, and 3750 scenario tree nodes; while those of RM had 8 stages, 278 million linear variables, 100 million constraints, and 100,000 scenario tree nodes. For those problems, the proposed approach obtained the solution in 1.1 days using 174 gigabytes of memory for SND, and in 1.7 days using 83 gigabytes for RM; while CPLEX v20.1 required more than 53 days and 531 gigabytes for SND, and more than 19 days and 410 gigabytes for RM.J. Castro was supported by the MCIN/AEI/FEDER grant RTI2018-097580-B-I00. L.E. Escudero was supported by the MCIN/AEI/10.13039/501100011033 grant PID2021-122640OB-I00. J.F. Monge was supported by the MCIN/AEI/10.13039/501100011033/ERDF grants PID2019-105952GB-I00 and PID2021-122344NB-I00, and by PROMETEO/2021/063 grant funded by the government of the Valencia Community, Spain.Peer ReviewedPostprint (published version

    On solving large-scale multistage stochastic problems with a new specialized interior-point approach

    Get PDF
    A novel approach based on a specialized interior-point method (IPM) is presented for solving large-scale stochastic multistage continuous optimization problems, which represent the uncertainty in strategic multistage and operational two-stage scenario trees, the latter being rooted at the strategic nodes. This new solution approach considers a split-variable formulation of the strategic and operational structures, for which copies are made of the strategic nodes and the structures are rooted in the form of nested strategic-operational two-stage trees. The specialized IPM solves the normal equations of the problem’s Newton system by combining Cholesky factorizations with preconditioned conjugate gradients, doing so for, respectively, the constraints of the stochastic formulation and those that equate the split-variables. We show that, for multistage stochastic problems, the preconditioner (i) is a block-diagonal matrix composed of as many shifted tridiagonal matrices as the number of nested strategicoperational two-stage trees, thus allowing the efficient solution of systems of equations; (ii) its complexity in a multistage stochastic problem is equivalent to that of a very large-scale two-stage problem. A broad computational experience is reported for large multistage stochastic supply network design (SND) and revenue management (RM) problems; the mathematical structures vary greatly for those two application types. Some of the most difficult instances of SND had 5 stages, 839 million variables, 13 million quadratic variables, 21 million constraints, and 3750 scenario tree nodes; while those of RM had 8 stages, 278 million variables, 100 million constraints, and 100,000 scenario tree nodes. For those problems, the proposed approach obtained the solution in 2.3 days using 167 gigabytes of memory for SND, and in 1.7 days using 83 gigabytes for RM; while the state-of-the-art solver CPLEX v20.1 required more than 24 days and 526 gigabytes for SND, and more than 19 days and 410 gigabytes for RMPeer ReviewedPreprin

    A note on the implementation of the BFC-MSMIP algorithm in C++ by using COIN-OR as an optimization engine

    Get PDF
    The aim of this technical report is to present some detailed explanations in order to help to understand and use the algorithm Branch and Fix Coordination for solving MultiStage Mixed Integer Problems (BFC- MSMIP). We have developed an algorithmic approach implemented in a C++ experimental code that uses the optimization engine COmputational INfrastructure for Operations Research (COIN-OR) for solving the auxiliary linear and mixed 0-1 submodels. Now, we give the computational and implementational descrip- tion in order to use this open optimization software not only in the implementation of our procedure but also in similar schemes to be developed by the users.nonanticipativity constraints, cluster partitioning, COIN-OR library, branch-and-fix coordination, multi-stage stochastic mixed 0-1 programming

    On modelling planning under uncertainty in manufacturing

    Get PDF
    We present a modelling framework for two-stage and multi-stage mixed 0-1 problems under uncertainty for strategic Supply Chain Management, tactical production planning and operations assignment and scheduling. A scenario tree based scheme is used to represent the uncertainty. We present the Deterministic Equivalent Model of the stochastic mixed 0-1 programs with complete recourse that we study. The constraints are modelled by compact and splitting variable representations via scenarios

    An SDP approach for multiperiod mixed 0-1 linear programming models with stochastic dominance constraints for risk management *

    Get PDF
    Abstract In this paper we consider multiperiod mixed 0-1 linear programming models under uncertainty. We propose a risk averse strategy using stochastic dominance constraints (SDC) induced by mixed-integer linear recourse as the risk measure. The SDC strategy extends the existing literature to the multistage case and includes both first-order and second-order constraints. We propose a stochastic dynamic programming (SDP) solution approach, where one has to overcome the negative impact the cross-scenario constraints, due to SDC, have on the decomposability of the model. In our computational experience we compare our SDP against a commercial optimization package, in terms of solution accuracy and elapsed time. We use supply chain planning instances, where procurement, production, inventory, and distribution decisions need to be made under demand uncertainty. We confirm the hardness of the testbed, where the benchmark cannot find a feasible solution for half of the test instances while we always find one, and show the appealing tradeoff of SDP, in terms of solution accuracy and elapsed time, when solving medium-to-large instances

    A parallelizable algorithmic framework for solving large scale multi-stage stochastic mixed 0-1 problems under uncertainty

    Get PDF
    Preprint submitted to Computers & Operations ResearchIn this paper we present a parallelizable scheme of the Branch-and-Fix Coordination algorithm for solving medium and large scale multi-stage mixed 0-1 optimization problems under uncertainty. The uncertainty is represented via a nonsymmetric scenario tree. An information structuring for scenario cluster partitioning of nonsymmetric scenario trees is also presented, given the general model formulation of a multi-stage stochastic mixed 0-1 problem. The basic idea consists of explicitly rewriting the nonanticipativity constraints (NAC) of the 0-1 and continuous variables in the stages with common information. As a result an assignment of the constraint matrix blocks into independent scenario cluster submodels is performed by a so-called cluster splitting-compact representation. This partitioning allows to generate a new information structure to express the NAC which link the related clusters, such that the explicit NAC linking the submodels together is performed by a splitting variable representation. The new algorithm has been implemented in a C++ experimental code that uses the open source optimization engine COIN-OR, for solving the auxiliary linear and mixed 0-1 submodels. Some computational experience is reported to validate the new proposed approach. We give computational evidence of the model tightening effect that have preprocessing techniques in stochastic integer optimization as well, by using the probing and Gomory and clique cuts identification and appending schemes of the optimization engine.This research has been partially supported by the projects ECO2008-00777 ECON from the Ministry of Education and Science, Grupo de InvestigaciĂłn IT-347-10 from the Basque Government, URJC-CM-2008-CET-3703 and RIESGOS CM from Comunidad de Madrid, and PLANIN MTM2009-14087-C04-01 from Ministry of Science and Innovation, Spain
    • …
    corecore